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Abstract

Bangladesh summer monsoon rainfall (BSMR), typically from June through

September (JJAS), represents the main source of water for multiple sectors.

However, its high spatial and interannual variability makes the seasonal predic-

tion of BSMR crucial for building resilience to natural disasters and for food

security in a climate-risk-prone country. This study describes the development

and implementation of an objective system for the seasonal forecasting of

BSMR, recently adopted by the Bangladesh Meteorological Department (BMD).

The approach is based on the use of a calibrated multi-model ensemble

(CMME) of seven state-of-the-art general circulation models (GCMs) from the

North American Multi-Model Ensemble project. The lead-1 (initial conditions of

May for forecasting JJAS total rainfall) hindcasts (spanning 1982–2010) and fore-

casts (spanning 2011–2018) of seasonal total rainfall for the JJAS season from

these seven GCMs were used. A canonical correlation analysis (CCA) regression

is used to calibrate the raw GCMs outputs against observations, which are then

combined with equal weight to generate final CMME predictions. Results show,

compared to individual calibrated GCMs and uncalibrated MME, that the CCA-

based calibration generates significant improvements over individual raw GCM

in terms of the magnitude of systematic errors, Spearman's correlation coeffi-

cients, and generalised discrimination scores over most of Bangladesh areas,

especially in the northern part of the country. Since October 2019, the BMD has

been issuing real-time seasonal rainfall forecasts using this new forecast system.

KEYWORD S

climate services, multi-model ensemble, North American multi-model ensemble project,
seasonal forecasting

1 | INTRODUCTION

Located in sub-tropical South Asia, Bangladesh is one of
the world's most densely populated countries. Bangladesh

is characterised by a tropical monsoon-type climate, with a
warm and rainy summer, and a pronounced dry season in
winter, features that make it highly vulnerable to the
effects of interannual climate variability (Rahman &
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Lateh, 2015) and change (Huq, 2001). The country experi-
ences an unimodal rainfall distribution, with most of the
rainfall typically concentrated from June through
September (JJAS). During this period, Bangladesh receives
about 70% of the total annual rainfall, with coefficient of
variability that has been quantified around 12% (Ahasan
et al., 2010). The pattern of the Bangladesh's summer
monsoon rainfall (BSMR) is highly variable spatially, exhi-
biting a general west–east climatological gradient in
annual rainfall ranging from 1500 to 4400 mm (Montes,
Acharya, Hassan, & Krupnik, 2021; Nashwan et al., 2019).
This pattern of variability strongly shapes human liveli-
hoods, especially in agriculture, which is a mainstay of the
country's economy. For instance, crop management deci-
sions and production losses often occur in Bangladesh as a
consequence of early or later arrival of rains, along with
excess or deficient monsoon rainfall amounts (Nahar
et al., 2018). Consequently, reliable BSMR forecasting at
actionable time scales could potentially play a significant
role in the planning and management of agriculture and
other activities such as flood management, urban plan-
ning, water-resource management and optimal operation
of irrigation systems (Hansen et al., 2006; Montes,
Acharya, Stiller-Reeve, Kelley, & Hassan, 2021).

Seasonal climate-prediction efforts in Bangladesh have
been based mostly on statistical and empirical forecasting
methods using Auto-Regressive Integrated Moving Aver-
age (ARIMA) models for rainfall and temperature predic-
tion (Bari et al., 2015; Mahmud et al., 2017; Mohsin
et al., 2012; Rahman & Lateh, 2015) or regression models
of the teleconnections between rainfall and various predic-
tors such as sea-surface temperature (SST; Hossain
et al., 2019; Mannan et al., 2015; Rahman et al., 2013a).
ARIMA models have been used to predict rainfall with
lead times of up to 12 months (Mahmud et al., 2017), but
the lack of statistical significance of year-to-year autocorre-
lation can lead to limited forecasting skills (Dahale &
Singh, 1993). A more widely-used approach has been the
use of empirical relationships between observed BSMR
and predictors such as sea-surface temperature, surface air
temperature and pressure gradients (Hossain et al., 2019;
Rahman et al., 2013b). For instance, the prediction of the
monthly and seasonal frequency of rainy days and heavy
rainfall events have been attempted using SST as a predic-
tor (Mannan et al., 2015), and skill is higher than for the
monsoon seasonal total amount, consistent with results
from other parts of the world (Robertson et al., 2009). Nev-
ertheless, the relatively weak teleconnection between
sources of seasonal predictability such as El Niño-
Southern Oscillation (ENSO) and seasonal climate in
Bangladesh strongly limits the skill of these rainfall fore-
casts compared to other parts of the globe (Ahmed
et al., 2017; Cash et al., 2017; Hossain et al., 2019). Due to
the complexity of the diverse climate interactions in the

vicinity of Bangladesh, non-linear and data-driven fore-
casting methods, such as artificial neural networks, adap-
tive neuro-fuzzy inference systems (ANFIS) and genetic
algorithms, may have some advantages over linear
methods (Banik et al., 2009) if sufficiently long time-series
are available.

State-of-the-art general circulation models (GCMs) that
represent atmospheric processes provide an alternative
non-linear physically-based approach to statistical model-
ling (Kang et al., 2004; Kang and Shukla, 2005). This
approach may produce more accurate and reliable climate
predictions compared to statistical models based on empir-
ical relationships (mostly linear) from observational data
(Barnston & Tippett, 2017). However, predictions from
GCMs often require correction due to their inherent sys-
tematic biases (Acharya et al., 2013; Tippett et al., 2007;
Wilks, 2002). Calibration methods can be used to modify
the amplitudes of large-scale patterns, and also to refine
the details of anomaly patterns for local downscaling
(Acharya et al., 2021; Barnston & Tippett, 2017; Doblas-
Reyes et al., 2005; Tippett et al., 2008; Wilks, 2017). In this
sense, multiple efforts have been carried out in order to
quantify the improvements in skill from GCMs after cali-
bration over different regions worldwide. However, in
Bangladesh, these efforts have focused on single-location
approaches but not at the country level (e.g., Montes
et al., 2022).

Officially, the Bangladesh Meteorological Department
(BMD) is responsible for providing operational seasonal
and monthly monsoon climate predictions to climate infor-
mation users. BMD has used a subjective consensus
approach based on meteorologists' experience to generate
products using all available Global Producing Center's fore-
casts and other available information. This subjectively-
based forecasting approach, however, has been found to be
a poor fit for many decision makers interested in more reli-
able and objective forecasts. There is an increasing demand
for high-resolution seasonal forecasts over Bangladesh at
sufficient lead times to allow response planning from users
in agriculture, hydrology, disaster management, energy,
health, and other sectors. This demand has prompted the
research for the development of an objective seasonal fore-
cast system following the World Meteorological Organiza-
tion's (WMO) recently published seasonal-forecast guidance
(World Meteorological Organization (WMO), 2020). The
guidance advocates the use of an objective seasonal forecast
procedure, defined as a traceable, reproducible, and well-
documented set of steps that allows the quantification of
forecast quality. The WMO has started to promote the
adoption of such objective-based forecasting methods at
Regional Climate Outlook Forums (WMO, 2017, 2020) and
by National Meteorological and Hydrological Services. In
response, an objective forecasting system was developed for
seasonal forecasting for Bangladesh, similar to others
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recently developed around the world (Acharya, Dinku,
et al., 2020; Acharya et al., 2021; IRI, 2020). This advanced
forecast system enables calibration, combination, and verifi-
cation of objective climate forecasts from the state-of-the-
art GCMs of the North American Multi-Model Ensemble
(NMME) project, and positions BMD to generate and
deliver targeted climate information products that could be
made relevant to the needs of decision-makers. Although
multi-model-based methods have been explored for the
Indian subcontinent (Acharya, Kar, et al., 2011; Kar
et al., 2012; Rajeevan et al., 2012), this is the first time, to
our knowledge, that they have been used for Bangladesh at
the country level, aligned with BMD needs. As of October
2019, this new forecast system is used in real-time by the
BMD (http://live.bmd.gov.bd/p/ThreeMonth283/). There-
fore, from an operational perspective, the potential benefits
of this new forecasting system need to be assessed in terms
of hindcast skill assessment.

In this article, we describe the development and per-
formance of an objective forecasting system which is
based on calibrated multi-model ensemble (CMME) sys-
tem in the seasonal prediction of BSMR and compare its
performance with uncalibrated GCMs. The paper is orga-
nised as follows: in Section 2, we briefly describe the data
used in this study, including NMME GCMs and the
observational reference; in Section 3, we explain the pro-
cedures of the proposed canonical correlation analysis
(CCA)-based calibration methods and illustrate how the
methods are employed in practice to make CMME-based
forecasts. In Section 4, we examine the performance of
calibrated individual model outputs compared to that
of uncalibrated outputs, along with validation of the
CMME system compared; in Section 5, we provide a brief
discussion and draw conclusions.

2 | DATASETS

2.1 | Observational reference

Developed by the Columbia University's International
Research Institute for Climate and Society (IRI) and
BMD, the latest Enhancing National Climate Services for
Bangladesh Meteorological Department (ENACTS-BMD)
dataset (Acharya, Faniriantsoa, et al., 2020) version is
used in this study. The ENACTS-BMD dataset is a high-
resolution (0.05� × 0.05�) daily gridded rainfall and tem-
perature dataset constructed by blending data from BMD
weather stations, satellite products (for rainfall) and rea-
nalysis data (for temperature). Since February 2020,
BMD archives and maintains this dataset. Its record
begins in January 1981 and is ongoing (updated every
month in real-time) at daily, decadal and monthly tempo-
ral resolutions. For constructing gridded rainfall, BMD

data from almost entire country's weather stations
(54) are merged with rainfall estimates from the Climate
Hazards Group InfraRed Precipitation (CHIRP; Funk
et al., 2015). Compared with other available gridded pre-
cipitation products, ENACTS-BMD performs better in
terms of monsoon total rainfall (Montes, Acharya, &
Hassan, 2021). In this study, seasonal total rainfall for the
period June through September (JJAS) are accumulated
from daily data for the years 1982 to 2018. Figure 1 pre-
sents the climatology, interannual standard deviation
and first empirical orthogonal function which (explains
44% of total variance) of total JJAS rainfall from
ENACTS-BMD product during the study period.

2.2 | GCM hindcasts and forecasts

Hindcasts and forecasts from seven GCMs belonging to the
NMME project phase 2 (Kirtman et al., 2014) were used in
this study (details of each model can be found in the corre-
sponding reference in Table 1). The NMME project coordi-
nates intra-seasonal to interannual climate predictions
from climate-modelling centres in the United States and
Environment Canada. The NMME products provide oppor-
tunities to characterise and quantify the uncertainty associ-
ated with model structure and initial conditions using a
large number of contributing models, each consisting of
several ensemble members. The lead-1 (initial conditions
of May for forecasting JJAS total rainfall) hindcasts (span-
ning 1982–2010) and forecasts (spanning 2011–2018) of
seasonal total rainfall for the JJAS season from these seven
GCMs were used. As the statistical post-processing process,
especially CCA, required longer training sample, we have
combined hindcast (29 years) and forecast runs (8 years;
altogether 37 years) from these models, under the assump-
tion that the hindcasts and forecasts are consistent
with each other. These models have different number of
ensemble members that were averaged to generate an
ensemble mean and having a common 1� resolution spatial
grid. These NMME monthly hindcast and forecast datasets
were obtained from the Columbia University's International
Research Institute's data library (http://iridl.ldeo.columbia.
edu/SOURCES/.Models/.NMME/).

3 | METHODOLOGY

As described in Section 1, we used a calibrated multi-
model ensemble (CMME) approach. This approach
involves calibrating individual GCMs using canonical cor-
relation analysis (CCA) based regression and assessing
their skill against raw GCM outputs. The calibrated
GCMs are averaged (equal weighting) to make a final
CMME time series. The CMME-based forecast is
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subsequently compared against observations to assess its
performance in relation to the uncalibrated forecasts. The
processing chain is summarised in the flow chart pre-
sented in Figure 2.

3.1 | CCA-based calibration

CCA is widely used for calibration of forecasts from
GCMs, for which the spatio-temporal patterns of GCM

rainfall are projected onto the observed patterns
(Barnston & Tippett, 2017; Tippett et al., 2007, 2008).
CCA is basically a multivariate linear regression method
allowing the identification of a sequence of pairs of pat-
terns in two multivariate data sets, to then construct a set
of transformed variables by projecting the original data
onto these patterns. Correlations between the pairs of
canonical variates, which are the transformed variables
generated from truncated empirical orthogonal functions
(EOF) or principal components (PC) of anomalies of

TABLE 1 List of the seven NMME models used, the responsible institutions, number of ensemble members and reference.

Model acronym Institution
Number of ensemble
members References

CanSIPSv2 Canadian Centre for Meteorological and
Environmental Prediction (CCMEP)

20 Lin et al. (2020)

COLA-RSMAS-CCSM4 The Center for Ocean-Land-Atmosphere Studies 10 Kirtman et al. (2014)

NASA-GEOS-S2S-2 National Aeronautics and Space Administration
(NASA), Goddard Space Flight Center

4 (10a) Borovikov et al. (2017)

GFDL-CM2p1-aer04 Geophysical Fluid Dynamics Laboratory 10 Delworth et al. (2006),
Zhang et al. (2007)

GFDL-CM2p5-FLOR-A06 Geophysical Fluid Dynamics Laboratory 12 Vecchi et al. (2014)

GFDL-CM2p5-FLOR-B01 Geophysical Fluid Dynamics Laboratory 12 Vecchi et al. (2014)

NCEP-CFSv2 NOAA's Centers for Environmental Prediction 24 (28a) Saha et al. (2019)

Note: The lead-1 (initial conditions of May for forecasting JJAS total rainfall) hindcasts (spanning 1982–2010) and forecasts (spanning 2011–2018) of seasonal
total rainfall for the JJAS season from these seven GCMs were used.
aThe value in parentheses shows the ensemble size for the forecast period.

FIGURE 1 Maps of (a) climatology

(mean), (b) interannual variability

(standard deviation) and the first

empirical orthogonal function (EOF1) of

total June–September rainfall from

ENACTS-BMD product. [Colour figure

can be viewed at

wileyonlinelibrary.com]
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predictor and predictand data, are called canonical corre-
lations. Linear regression between predictand-predictor
canonical variates is used for the forecast. Finally, the
predicted values are recovered by EOF synthesis and
reconstructed from the predictand means and standard
deviations. More details of CCA method can be found in
Wilks (2020).

The CCA-based calibration has been carried out sepa-
rately for ensemble mean of each GCM prior to produc-
ing multi-model ensembles. The full procedure consists
of the following sequential steps:

• At the outset, observed rainfall was transformed to
Gaussian by fitting a Gamma distribution. From esti-
mates of the shape and scale parameters, the mean
and variance of the corresponding Gaussian distribu-
tion are given in closed form.

• As pre-orthogonalisation, CCA requires truncation of
the EOF or PC expansions of the GCM (the predictor)
and on the corresponding observations (the predic-
tand). To avoid overfitting due to small sample size to
train CCA, we have pre-selected five PCs for GCM and
observation. The total variance explained by 5 PC is
92% for observation and for GCMs it is on average 85%
(as there are different GCMs).

• In CCA, the predictor domain is usually designed to be
larger than the predictand domain, so that relevant fea-
tures outside of the predictand domain can be used for
better model calibration (Barnston & Tippett, 2017).
Therefore, the spatial domains for the GCM predictor
fields were taken to be 15� N–35� N, 80� E–100� E, and
all the ENACTS-BMD grid points within Bangladesh
(Figure 3) were considered as our predictand (Figure 3).

• The CCA model was trained using a leave-5-out cross-
validation in the 37 years of dataset (1982–2018) in
which 5 consecutive years are retained from both the
pre-EOF and the CCA training sample from GCM and
observation, and the middle year of the 5 is predicted.
The years withheld progress from the earliest 5 to the
latest 5 in which the first and the last years are also pre-
dicted so that each year has a cross-validated prediction.

• Finally, the cross-validated series for the predictand
variable is generated for 37 years and then validated
against the observed rainfall data using skill scores
mentioned in the next section.

3.2 | Calibrated multi-model ensemble

Previous works have shown that the use of multi-model
ensemble (MME) approaches improves the forecast skills
from individual GCM (Acharya, Kar, et al., 2011; Acharya
et al., 2014; Kar et al., 2012; Krishnamurti et al., 2009). In
general, an MME can be generated by combining equally
weighted ensemble members or weighted according to
their prior performance (Acharya, Kar, et al., 2011; Kar
et al., 2012; Wang et al., 2019; Weigel et al., 2008; Weigel
et al., 2010). Studies shown that performance-based
weighting does not bring significant differences compared
to the equal weighting to make MME based on calibrated
GCMs (Wang et al., 2019; Weigel et al., 2008). In this
work, equally weighted calibrated GCMs were used to
generate the MME following Acharya et al. (2021).

3.3 | Verification metrics

To examine the skill of uncalibrated, calibrated GCM and
MME forecasts, two commonly used forecast verification
metrics, that is, the Root Mean Square Error (RMSE),
which corresponds to the average squared difference
between the forecast and observation pairs, and the
Spearman rank correlation coefficient, which is the Pear-
son's product–moment correlation on the ranked values
for each variable. In Spearman's rank correlation, a
monotonic relationship between two variables is an
important underlying assumption and is less restrictive

FIGURE 2 Flow chart illustrating the steps of generation of

seasonal forecasts using the calibrated multi-model ensemble

approach.
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FIGURE 3 Topographic map showing the

spatial domain used as predictor for general

circulation models (black square), and

Bangladesh (predictand area). Elevation data

obtained from the Shuttle Radar Topography

Mission SRTM90 digital elevation model.

[Colour figure can be viewed at

wileyonlinelibrary.com]

FIGURE 4 Taylor diagram for prediction

skill of country-averaged time series of total

June–September rainfall of (a) uncalibrated and

(b) calibrated GCMs: CanSIPSv2 (M1), COLA-

RSMAS-CCSM4 (M2), GFDL-CM2p5-FLOR-A06

(M3), GFDL-CM2p5-FLOR-B01 (M4), GFDL-

CM2p1-aer04 (M5), NASA-GEOSS2S (M6), and

NCEP-CFSv2 (M7). Blue dashed line represents

the standard deviation, and black dashed line

the root mean square difference (RMSD). The

red line represents the standard deviation of the

country-averaged time series of observed total

precipitation. [Colour figure can be viewed at

wileyonlinelibrary.com]
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than that of a linear relationship, which must be met by
Pearson's correlation. We also employed the ‘generalised
discrimination score’, also known as ‘two alternative
forced-choice score’ (2AFC score; Mason & Weigel, 2009).
The 2AFC score measures the proportion or probability of
a correct decision of all available pairs of observations of a
differing category whose forecasts are discriminated in the
correct direction. The score ranges between 0% and 100%
while any value higher than 50% implies that the forecast
is able to discriminate beyond random guessing. These
verification measures are used in this study as they are
recommended by WMO standardised verification system
for long-range forecasts for skill assessment (WMO, 2018).

4 | RESULTS AND DISCUSSION

4.1 | Skill of uncalibrated GCM
predictions

Before assessing the skill of the CMME-based prediction,
the performance of each individual GCM was analysed.

A Taylor diagram (Taylor, 2001) summarising the coun-
try-averaged performance of total JJAS rainfall predicted
by each GCM is displayed in Figure 4a. Each of the
models does not perform well in terms of correlation with
the observations, which varies between −0.3 and close to
zero. Observed standard deviations are largely underesti-
mated by the GCMs, which range from around 50 mm to
100 mm, with root mean square differences between
230 and 300 mm. In general, these models performed
poorly in reproducing the observed variability in JJAS
rainfall over Bangladesh. This performance is
in agreement with a recent study by Kelley et al. (2020),
where the skill of NMME models were examined in the
context of sub-seasonal metrics prediction, and which
described low-to-modest skill in predicting seasonal rain-
fall in Bangladesh.

These differences may be related to the model's coarser
spatial resolution (1� × 1� grid) compared to higher resolu-
tion observed data (0.05� × 0.05� grid). Although large-
scale anomalies can be predicted at such coarse resolution,
details on rainfall heterogeneity over Bangladesh could not
be resolved, which suggests that the downscaling of GCM

FIGURE 5 Correlation coefficient between (a) observed area averaged BSMR and global SST for JJAS and (b–h) model predicted

rainfall with model SSTs. (b) CanSIPSv2, (c) NASA-GEOSS2S, (d) GFDL-CM2p1-aer04, (e) GFDL-CM2p5-FLOR-A06, (f) GFDL-

CM2p5-FLOR-B01, (g) COLA-RSMAS-CCSM4, and (h) NCEP-CFSv2 over the period of 1982–2018. Dotted areas denote statistically

significant correlations. [Colour figure can be viewed at wileyonlinelibrary.com]
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outputs can be highly important. A possible hypothesis
for this poor performance by GCMs that has been
described as driving bias in GCMs forecasting is the over-
sensitivity of GCMs to El Niño-Southern Oscillation
(ENSO)-rainfall teleconnections (Acharya, Kar, et al., 2011;
Pillai et al., 2018; Singh et al., 2019). To investigate this pos-
sibility, Pearson's correlation coefficients between area-
averaged seasonal total rainfall over Bangladesh and global
sea surface temperature (SST) have been computed for
observed and predicted rain and SSTs in each model
(Figure 5). In observation, the ENSO-rainfall teleconnec-
tion is found to be positive although it is not statistically
significant. Rahman et al. (2013b) found the similar posi-
tive ENSO-rainfall teleconnection using observations from
1985 to 2008. In contrast, the ENSO-rainfall teleconnec-
tions in most of the GCMs indicate a strongly negative rela-
tionship, indicating that GCMs are unable to reproduce the
observed teleconnections satisfactorily, even of an opposite
sign. Although the CCSM4 model showed the similar sig-
nal (positively correlated) of teleconnection pattern as
observed teleconnection pattern, the magnitude of correla-
tion is highly positive and statistically significant. Previous
studies evaluating NMME models for Indian monsoon also
found that the ENSO-rainfall teleconnections in the GCMs
are stronger than in the observation which is a potential
reason for GCM's poor performances to simulate monsoon
rainfall (Pillai et al., 2018; Singh et al., 2019). Additionally,
studies also shown that the seasonal prediction of north-
eastern Indian region including Bangladesh is very chal-
lenging due its positive ENSO (out-of-phase) teleconnec-
tion whereas the major part of Indian subcontinent has a
negative relationship with ENSO (Choudhury et al., 2019;
Saha et al., 2019). However, most of the GCM's cannot dis-
tinguish the out-of-phase relationship and having negative
teleconnection with ENSO for the monsoon over entire
Indian subcontinent. Other hypotheses of poor predictabil-
ity by GCM can be drawn from the potential predictability
(PP) analysis. Although there is a myriad of possible ways
to estimate PP, we consider signal-to-noise ratio (SNR)
to evaluate the predictive power of the models where the
individual ensemble members from each of the models
are taken into consideration (Figure 6). The SNR is used in
several studies for the quantification of the predictive
power of GCMs (Attada et al., 2022; Kang et al., 2004; Nair
et al., 2013; Singh et al., 2012) for the Indian summer mon-
soon season. The SNR is defined as the ratio of external
and internal variability where the external component is
obtained as the variance of the ensemble mean and the
internal component can be evaluated as the variance of
noise (deviation of members from the ensemble mean).
This implies that the larger the SNR, the better the
predictive power. It can be noticed from Figure 6 that the
except for the NASA-GEOSS2S, most of the GCMs

(CanSIPSv2, GFDL-CM2p5-FLOR-A06, GFDL-CM2p5-
FLOR-B01, COLA-RSMAS-CCSM4, and NCEP-CFSv2) has
SNR within 0–0.2 range which represents a very weak
predictability (external variance is �0%–4%). These lower
SNR values explain the predictability limit for each GCM.
This inability underscores the importance of calibration

FIGURE 6 Signal-to-noise ratio of (a) CanSIPSv2, (b) NASA-

GEOSS2S, (c) GFDL-CM2p1-aer04, (d) GFDL-CM2p5-FLOR-A06,

(e) GFDL-CM2p5-FLOR-B01, (f) COLA-RSMAS-CCSM4, and

(g) NCEP-CFSv2 over the period of 1982–2018. [Colour figure can
be viewed at wileyonlinelibrary.com]
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methods to partially or wholly remove systematic biases
before computing a multi-model ensemble-based forecast.
As described in Section 3.1, CCA-based calibration is useful
in this regard as it projects the GCM rainfall onto the
observed spatio-temporal patterns.

4.2 | Skill of calibrated GCMs
predictions

The Taylor diagram of calibrated GCMs of Figure 4b
shows that after calibration the root mean square
differences range from 200 to 230 mm, representing

an improvement over the uncalibrated GCMs. Moreover,
it is also noticed the correlation also improved after cali-
bration. For instance, the highly negative correlations
between observations and models such as NASA-
GEOSS2S and GFDL-CM2p1-aer04 become positively
correlated after calibration. To examine the performance
of the CCA-based calibration method at grid point scale,
RMSE, Spearman's correlation coefficients and 2AFC
scores are computed before and after calibration for each
NMME model. For uncalibrated models, we interpolated
GCMs to the ENACTS-BMD's resolution for a fair com-
parison as CCA produced the same resolution products
as ENACTS-BMD. As similar results are found for all

FIGURE 8 Maps of Spearman correlation for uncalibrated (left

column) and calibrated (right column) total June–September

rainfall (1982–2018) for (a) GFDL-CM2p5-aer04, (b) NASA-

GEOSS2S, and (c) NCEP-CFSv2. Dashed areas denote statistically

significant correlations. [Colour figure can be viewed at

wileyonlinelibrary.com]

FIGURE 7 Maps of root mean square error for uncalibrated

(left column) and calibrated (right column) total June–September

rainfall (1982–2018) for (a) GFDL-CM2p5-aer04, (b) NASA-

GEOSS2S, and (c) NCEP-CFSv2. Colour bar in mm/season. [Colour

figure can be viewed at wileyonlinelibrary.com]
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NMME models, we selected GFDL-CM2p5-aer04, NASA-
GEOSS2S and NCEP-CFSv2 models for illustrative pur-
poses. The north-eastern and south-eastern portions of
Bangladesh exhibit the highest RMSE, which corre-
spond to the rainiest areas of the country (Figure 7).
Notably, the calibration reduces the RMSE, with values
below 200 mm over most of the country, except for
rainier regions where RMSE is around 300 mm for
most models. Calibrated models show higher skill in
terms of correlation for most of the country area
(Figure 8). The correlation coefficients of GFDL-
CM2p5-aer04 and NASA-GEOSS2S before calibration
are mostly negative, but in general, improved after

calibration, except in south-eastern Bangladesh. Over
southern and eastern parts of the country, NCEP-
CFSv2 correlations turn from negative to positive. Also,
positive correlations in the north are similar before and
after calibration. For all models, the 2AFC score also
improved: areas where 2AFC was less than 50% for
uncalibrated model outputs became higher than 50%
after calibration (Figure 9). Moreover, the spatial pat-
tern of improvement is similar for 2AFC scores and
Spearman's correlation coefficients.

In general, the CCA-based calibration improves the
forecast skill of uncalibrated models. Moreover, when
RMSE is used as the verification metric, CCA calibration
appears to improve the forecasting skill strongly, but cor-
relation or 2AFC score does not consistently improve in

FIGURE 9 Maps of generalised discrimination score (2AFC)

for uncalibrated (left column) and calibrated (right column) total

June–September rainfall (1982–2018) for GFDL-CM2p5-aer04 (a),

NASA-GEOSS2S (b), and NCEP-CFSv2 (c). [Colour figure can be

viewed at wileyonlinelibrary.com]

FIGURE 10 Maps of (a) root mean square error,

(b) Spearman's correlation coefficient, and (c) Generalised

discrimination score (2AFC) of total June–September rainfall

(1982–2018) for uncalibrated (left column) and calibrated (right

column) multi-model ensemble predictions. Dashed areas in

(b) and (c) denote statistically significant correlations. [Colour

figure can be viewed at wileyonlinelibrary.com]
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every case, especially where the models show poor skill
in the uncalibrated version, such as the case of NASA-
GEOSS2S, which can be explained by the limited sample
data to train the CCA.

4.3 | Skill of calibrated multi-model
ensemble

To assess the performance of CMME, its skill is compared
with uncalibrated MME, namely, UMME (averaging
uncalibrated individual model) and presented in
Figure 10. The skill of the UMME can be used as a
benchmark. In general, CMME outperformed UMME in
all skill scores. The RMSE is much lower in CMME, espe-
cially in north and south-eastern Bangladesh. Consider-
ing Spearman's correlation coefficient, UMME shows
positive values only over a small area in the northern and
drier areas of Bangladesh, whereas CMME shows wide-
spread positive values except over a small area in the
more mountainous southeastern part of the country
where the correlations are close to zero or slightly nega-
tive. In addition, CMME Spearman's correlation coeffi-
cients are higher compared to most calibrated individual
models. In terms of the 2AFC score, Figure 9c shows that
values higher than 50% are dominant in CMME, except
for the same region over the southeast. These results sug-
gest an overall improvement of skill in BSMR prediction
when CMME is used; however, high within-country dif-
ferences are also observed, which can be associated with
the complex local-scale precipitation mechanisms and
the high spatial variability in climatological rainfall in
Bangladesh.

5 | CONCLUDING REMARKS

This study aimed to develop an improved seasonal fore-
cast system based on calibrated multi-model ensemble
for the prediction of BSMR. For this purpose, we devel-
oped a hybrid dynamical–statistical technique using
state-of-the-art GCMs from the NMME project. The indi-
vidual GCM's seasonal predictions have been calibrated
using a CCA approach to correct large systematic biases.
These calibrated individual model predictions were then
combined with equal weighting to obtain the final
CMME forecast. Although similar multi-model prediction
approaches have been used extensively, to the best of our
knowledge, this is the first time that it has been used to
produce seasonal forecasts of the BSMR. Since October
2019, each month this CMME-based forecast is prepared
in real-time by the BMD for the next season. Therefore,
from an operational perspective, the potential benefits of

such a forecasting system need to be illustrated and docu-
mented in terms of the gain in quality of forecasts in real-
time. Although this study only focuses on the skill of this
forecast system for the summer monsoon season as the
primary period of precipitation in Bangladesh, additional
research should also document the predictability of pre-
and post-monsoon precipitation, as well the applicability
of our predictions for practical climate services in
Bangladesh.

In conclusion, we found that although GCMs provide
a solid non-linear approach to alternative statistical
modelling to predict the BSMR, the calibration of models
is necessary to generate operational forecasts given the
strong model biases over Bangladesh. The biased perfor-
mance of GCMs may be partly related to the model's
coarse spatial resolution, their over-sensitivity to SST-
rainfall teleconnections and lower signal-to-noise ratio
which explains the predictability limit. Our results
strongly indicate that CCA-based calibration can gener-
ate significant improvements that reduce the magnitude
of systematic errors (RMSE) compared to individual
uncalibrated models. Calibration also appears to improve
Spearman's correlation coefficients and 2AFC scores over
most of Bangladesh, exempting a few locations in the
north- and south-east of the country. In conclusion, our
analysis demonstrates that the skill of CMME is much
better than the UMME and in comparison, to individual
calibrated models, especially in the northern part of the
country. However, due to limited sample data to train
the CCA (32 years; using leave-5-out cross-validation in
37 years of hindcast data), further room for skill improve-
ment which would be the subject of future research and
will require a large sample to achieve increased
robustness.
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